
1

Abstract

BMTP offers rate controlled multicast with
reliability, high throughput, and support for large
numbers of receivers. A multicast sender needs feedback
from receivers to recover from errors and to choose an
appropriate send rate, but must avoid being overwhelmed
as the number of receivers grows. BMTP does this by
keeping the rate at which each receiver sends feedback
inversely proportional to a running estimate of the
number of receivers. BMTP bases its send rate on the
minimum of the receive rates observed by the receivers,
causing the sender to slow down in the face of packet loss
or competing traffic, and to speed up when there is spare
network capacity. BMTP’s NAK-based retransmission
rarely sends any data more than twice, a substantial
improvement over iterated unicast. Rabin’s Information
Dispersal Algorithm can reduce this re-send rate as close
as desired to the underlying loss rate of the network.
Simulations with 1000 receivers substantiate these claims.

1. Introduction

Lack of a suitable multicast transport protocol has
prevented bulk data transfer applications from using the
Internet multicast facilities. Netnews, mailing lists, and
mass software updates, for instance, all distribute large
amounts of identical information to many receivers.
Currently, however, these applications use many one-to-
one (or unicast) transfers over the Internet, sending the
same data over the network many times. The idea of
multicasting the data just once is old [11], but no existing
multicast transport protocol provides the reliability and
scalability required by these applications. BMTP
addresses this need.

BMTP solves only the reliable high-throughput
multicast problem; it does not cater to all multicast
applications. These are its design goals:

• Allow a sender to transmit a long stream of data to
many receivers over the Internet.

• Assure reliability by re-sending lost data.
• Send as fast as the network allows without

overloading it.
• Limit the sender’s complexity and the load placed

on it, as it could be a bottleneck.
• Allow receivers to come and go at any time.
• Adapt to widely varying network capacities along

the paths to different receivers.
• Do not require changes to the underlying Internet.
• Scale to thousands of receivers over a wide area.
BMTP’s goals do not include low delay,

coordination among multiple senders, and consistent
message ordering. Interactive applications might work
better with multicast transport protocols that provide low
delay [2,5]. Protocols that guarantee consistency among
multiple participants [1] are better suited than BMTP to
distributed computations. Applications with a limited
number of receivers or limited network complexity may
be more efficient with protocols [3,10,12] that take
advantage of such limits. BMTP’s intended applications
fall outside these classes, and BMTP takes advantage of
the their tolerance of delay to provide scaling and
adaptability to a wide range of network conditions.

The next section describes BMTP’s relationship to
existing work. Section 3 presents BMTP’s design, and
sections 4 and 5 describe further details. Section 6 uses
simulation results to show how well BMTP works across
a range of error rates and numbers of receivers. Section 7
presents the improvements in error recovery made
possible by the Information Dispersal Algorithm.

2. Related Work

BMTP relies on IP Multicast [4] to deliver packets to
receivers. An IP Multicast application can send packets to
one of a number of special multicast IP addresses, or ask
to receive all packets sent to such an address. IP Multicast
routers keep track of all the receivers listening to each
address; the receivers for each address are called a group.

Copyright 1997 IEEE. Published in the Proceedings of INFOCOM'97,
April 7-11, 1997 in Kobe, Japan. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works, must be obtained
from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE
Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ
08855-1331, USA. Telephone: + Intl. 908-562-3966.

Bulk Multicast Transport Protocol

Robert Morris
Division of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138 USA

2

IP Multicast delivers packets along a tree rooted at the
sender with a leaf at each group member. Figure 1 shows

an example of a multicast delivery tree layered on top of
an internet. This tree provides higher efficiency than
separate unicasts to each receiver. No one entity, not even
the sender, needs to keep track of the entire group
membership; this allows IP Multicast groups to scale to
thousands of members. Like the Internet, IP Multicast
provides unreliable best-effort delivery. The distribution
tree often causes a single packet loss near the sender to
affect more receivers than a loss near a leaf.

A number of previous systems have addressed
reliable multicast. One approach is to extend ideas in
reliable unicast protocols such as TCP [8]. For instance,
HPBFTP [3] and SCE [10] require that all receivers
acknowledge the data as they are sent. The sender knows
the identities of the receivers, so it can re-send any data
not acknowledged by all receivers within one round-trip
time of the initial transmission. Further, the
acknowledgments (ACKs) allow the sender to use sliding
window flow control to avoid overloading the network or
receivers. While these are important properties, such a
scheme cannot scale well: the sender cannot easily track a
large and changing list of receivers, nor avoid being
swamped by a large number of acknowledgments for
each packet sent.

MTP [1] fixes some of these problems, though it
focuses on ordering messages from many senders rather
than bulk transfer. An MTP receiver does not
acknowledge every data packet. Instead, it returns a
negative acknowledgment (NAK) packet to the sender
when it notices that it has failed to receive a data packet.
Thus the sender receives NAK packets in proportion to
the number of receivers times the loss rate, not times the
send rate. However, if multiple receivers miss the same
data packet, they may flood the sender with NAKs. This
might happen constantly in a large network. In addition,

because MTP does not use ACKs, it cannot use a sliding
window for flow control. Instead the sender must pace
itself with rate control. However, the protocol
specification does not mention a general method for
adapting this rate to changing conditions in a large
network.

SRM [5] provides a solution to the problem of
multiple NAKs for the same lost packet. A receiver
delays transmission of a NAK packet in a manner
designed to ensure that the receiver closest to the point
where the packet was lost sends a NAK first. The receiver
multicasts the NAK to all the other receivers as well as
the sender, so that any participant with a copy of the lost
data can re-send it. Again, participants that receive a
NAK delay re-sending the data in a way that makes it
likely that only the closest participant will re-send. Thus,
in many situations, a lost data packet will result in only
one NAK and re-sent data packet.

SRM is well suited to interactive traffic but has some
drawbacks for bulk transfers. If retransmission is to be
efficient, all the receivers must remember all recently
transmitted data. This may not be reasonable for large
amounts of data. SRM also includes no adaptive flow
control mechanism to avoid overloading the network.
Since the number of NAKs generated is only loosely
related to the number of packet loss events, it might be
hard for the sender to gather enough information to adjust
its rate. For instance, suppose there are 1000 receivers,
and the sender sees one NAK for every two data packets
it sends. This could mean that all the receivers are seeing
50% packet loss, or that 999 of them are receiving
perfectly and just one has a problem. The sender might
wish to drastically reduce its rate in the first case, and
keep it the same in the second, but has no way in SRM to
distinguish the two.

The IVS video multicast system [2], while not
reliable, does have adaptive rate control.Each receiver
keeps track of the fraction of packets it failed to receive
(presumably due to network overload). The sender
decides what fraction of receivers are overloaded by
probing a small subset of them, chosen randomly. The
sender decreases its send rate by half if more than 1.4%
of the receivers are losing packets. It increases its send
rate slowly if none of the receivers report loss. BMTP, as
well as providing reliability, allows more accurate flow
control by giving the sender more specific information
about receive rates.

The RMTP system [7] uses ACKs for reliability and
a window for flow control. It avoids flooding the sender
with ACKs by combining them as they flow back up the
multicast tree. The combining nodes may re-send missing
data if they have it stored locally. RMTP requires
changes to multicast routers to allow such retransmissions
to be sent only to the sub-tree below the combining node.

Figure 1: IP Multicast Distribution Tree Example

Sender

3

RMTP lacks a mechanism to adapt the number and
placement of combining nodes to changes in the number
and location of receivers. Finally, RMTP’s ACK
combining scheme discards information that the sender
needs to set its window size, and thus its transmission
rate. An RMTP sender decreases its window when ACKs
indicate that too many packets are being lost. Combining
nodes that buffer and re-send lost data will not report
losses to the sender unless they run out of buffer space.
Combining nodes that merely combine ACKs will tend to
report every packet as lost if there are many receivers. In
either case the information available to the sender may be
misleading.

3. BMTP Architecture

BMTP bases its error and flow control on status
packets sent from receivers to the sender. Each status
packet contains the rate at which the receiver recently
received data. This receive rate is the number of bytes per
time successfully delivered to the receiver by the
network; a receiver will report a rate lower than the send
rate if the network is slow, if the network drops packets,
or if the receiver cannot keep up with the sender. A status
packet may optionally contain a NAK as well: the
sequence number of a missing packet. Receivers unicast
status packets to the sender at times described below.

The BMTP sender arranges to receive only one status
packet per data packet it sends as follows. It maintains a
number N, an estimate of the number of receivers. The
sender includes N in each data packet it sends. Whenever
a receiver gets a data packet, it sends back a status
packets with probability 1/N. The sender measures the
ratio of status packets it receives to data packets it has
sent. If this ratio is higher than one, the estimate N is too
low; and if lower, N is too high. The sender periodically
divides N by the ratio to adapt to any changes in the
number of receivers. Thus, no matter how many receivers
miss a given data packet, the sender will not have to deal
with a high rate of incoming status packets.

The sender maintains an estimate of a reasonable
transmit rate, and the minimum receive rate recently
reported in a status packet. When it receives a status
packet which indicates a receive rate substantially less
than the previous minimum, it immediately decreases the
transmit rate to the indicated receive rate. The sender
periodically increases the transmit rate to be slightly
higher than the minimum receive rate recently reported.
This algorithm will increase the send rate to just over the
capacity of the slowest part of the system, whether that is
a slow network link or a slow CPU. It knows when it has
reached the bottleneck capacity because reported receive
rates stop increasing. If network capacity decreases, or if
packets are lost, one or more receivers will observe a

decreased receive rate. These receivers will notify the
sender of the lower rate, and the sender will send at that
rate but no slower. The algorithm intentionally overloads
the network slightly in order to detect spare capacity. As
described below, BMTP can recover from the resulting
packet losses with little loss in efficiency. This may seem
a greedy policy, but it is analogous to TCP's congestion
window increase algorithm [6].

Receivers detect missing data packets by looking for
gaps in the packet sequence numbers. Each time the
receiver sends a status packet, it can ask the sender to re-
send one data packet. The receiver will only ask for a
packet that has been missing for a while, in case the
network re-orders packets and to allow the sender some
flexibility in the order in which it sends data. The receiver
will not ask for the same packet twice in quick
succession, to give the sender time to respond to the
earlier request.

The sender may need to make decisions about which
packets to re-send; even though it will receive at most
one NAK per data packet it sends, it may wish to limit the
bandwidth used by re-transmissions. Note that the
transmit rate described above applies to all packets the
sender sends, including re-transmissions. The sender
could record all NAK requests and service them in some
order. However, this is not necessary. The sender is
willing to use some fraction of its transmit rate for re-
transmissions. As each NAK arrives, the sender responds
to it if recent re-sends have used less than that fraction,
and discards the NAK otherwise. If there are many
NAKs, the sender will use up the allowed fraction with
responses, and remembering NAKs won't cause it to re-
send any faster. If there are only a few NAKs, the sender
will be willing to respond to all of them. Receivers re-
send NAKs periodically in case the sender ignores them
or the network drops them.

As described, this scheme has trouble with very non-
uniform packet loss. Suppose one receiver misses many
packets, but 999 others have perfect reception. The one
receiver can request only one re-transmission for every
1000 packets sent, which is only enough to recover from
a tiny loss rate of 0.1 percent. Few of the status packets
the sender gets will have a NAK in them; the others will
be wasted from the point of view of error correction.
BMTP handles non-uniform loss by weighting the
receiver counting mechanism described above by the
number of packets each receiver is missing. Call this
number M for a particular receiver. Receivers cap M at a
global constant K to avoid one receiver hogging all the
NAK bandwidth. The receiver places MAX(MIN(M, K),
1) in status packets. The sender sends out its estimate N
of the sum of these numbers in data packets. The receiver
returns a status packet with probability MAX(MIN(M,
K), 1) / N in response to each data packet. This scheme

4

allows less reliable receivers to send more status packets
and thus more NAKs. Note that this means the bandwidth
samples in status packets are dominated by the receivers
with high loss rates, which is appropriate since they will
tend to have the lowest receive rates.

4. Timing Details

The discussion above omitted the details of timing
intervals. BMTP defines a constant control interval,
which must be at least the maximum possible round trip
time including queuing delay. The experimental
implementation uses ten seconds. Control is exerted once
per control interval. This includes the sender increasing
the transmit rate and the sender changing the estimated
number of receivers that it announces. Receivers wait for
a control interval before sending a NAK for a missing
packet, and between NAKs for the same packet. The idea
is that any of these actions takes at least one round trip
time before its effects will be noticed by the actor.

BMTP defines a measurement interval to be twice
the control interval. All measurements are averaged over
the measurement interval. For instance, the receivers
measure the receive rate and the sender estimates the ratio
of status packets to data packets over a measurement
interval.

These intervals are conservative constants because it
is difficult to estimate the round trip time adaptively. An
accurate estimate would speed BMTP's response to lost
data and increases in available network bandwidth (recall
that BMTP immediately slows down in response to
reports of decreased bandwidth). Low delay re-
transmission is not critical for bulk transfers. The sender
must retain data to re-send it, and the receiver must
remember out of order arrivals, but they can do this on
disk rather than in expensive main memory.

One danger of a short measurement interval is that
the sender will not hear status packets from all receivers
in each interval. The send rate in packets per second

times the measurement interval yields the number of
status packets the sender will hear. If reliability is critical,
it may be necessary to increase the measurement interval
to reflect the number of receivers. Another possibility is
to allow more than one status packet per data packet. In
practice it is enough that status packets give the sender a
sample of the receive rates observed by the receivers,
from which the sender need only select the minimum. As
long as there are no tiny minorities among the receivers,
such a sample will likely include a rate close to the
minimum.

The experimental version of BMTP sends 5 percent
faster than the minimum reported receive rate. The 5
percent figure is a trade-off between the speed at which
BMTP can ramp up its rate to make use of spare
bandwidth and the rate at which it forces the network to
drop packets.

5. Practical Details

This description of BMTP assumes an infinite stream
of bytes. Typical applications will want to transfer a
stream of finite-size files. The intent is that an upper
protocol layer place file identifiers and delimiters in the
payload of BMTP data packets. The BMTP sender needs
to be able to ask the file layer for a block of data, giving it
a byte offset in the BMTP stream. The sender may ask for
any given block of data more than once if it must re-send
it. The BMTP receiver will deliver blocks to the file layer
along with a byte offset. The receiver may deliver blocks
out of order, expecting the file layer to store them until it
accumulates a full file.

BMTP cannot guarantee complete reliability. A
receiver may be powered down or disconnected from the
net indefinitely. The sender may wish to place a limit on
the age of data it re-sends, to avoid having to buffer it
forever. The sender may also wish to enforce a minimum
send rate, knowing that receivers on very slow links
might not be able to keep up. These unlucky receivers

Data Packet Field Bytes

UDP/IP Header 28

of Receivers 4

Measurement Interval 4

Packet Seq # 8

Data Seq # 8

Data Payload 512

Status Packet Field Bytes

UDP/IP Header 28

Measurement Interval 4

Packets Received 8

Packets Lost 8

NAK Data Seq # 8

Figure 2: Packet Formats

5

will wish to generate many NAKs. For this reason,
BMTP places the limit K on the weight allowed each
receiver in the receiver count estimation algorithm. The
sender could also ignore NAKs in status messages that
report receive rates lower than the enforced minimum
send rate.

If BMTP comes to the end of the data to be sent, it
keeps sending empty data packets at a low rate, which
allows receivers to continue to report lost packets.

Figure 2 shows the BMTP packet formats. The
sender places the measurement interval in milliseconds in
each data packet it multicasts so the receivers need not
compile this number into their code; the measurement
interval does not change over the life of a session. The
sender includes two sequence numbers in each data
packet. The packet sequence number uniquely identifies
packets; a retransmission will have a different packet
sequence number than the original transmission.
Receivers use the packet sequence numbers to decide
how many packets they have missed. The data sequence
number indicates where the payload lies in the stream of
bytes to transmit. Receivers use data sequence numbers to
ask for specific data to be re-sent. Each status packet
includes the total number of packets the receiver has
recently received and missed. To allow receivers some
flexibility, status packets include the interval over which
those counts were taken. The status packet also includes
one optional data sequence number which the receiver is
missing and would like the sender to retransmit.

6. Experimental Results

A test version of BMTP exists, running as a user
application on UNIX workstations. A single sender on a
10-megabit Ethernet can sustain about 5 megabits per
second to half a dozen receivers. The system also works
efficiently when one receiver is connected by way of a
modem: the sender keeps the modem busy, losing only
the expected 5% of packets.

Simulation with a wide variety of error rates and
numbers of receivers illustrates BMTP’s strengths and
limitations. The simulator used for the following
discussion models the network path from the sender to
each receiver independently, as if the multicast tree
consisted of a separate link from the sender to each
receiver. For BMTP this topology is a worst case. Such a
flat tree tends to produce different sets of lost packets at
different receivers. Receivers in more tree-like topologies
would tend to see similar sets of losses due to packets
being dropped near the root of the tree. Thus the number
of distinct lost packets over all receivers will tend to be
higher in the simulated topology than in a tree-like
topology. Since BMTP places a limit on the rate at which
receivers can produce NAKs, it is at a disadvantage when

many different packets are missing.
Each simulated path involves a queue which can hold

at most 50 512-byte packets. Packets leave each queue at
a rate specified in the description of each simulation
below. If a packet arrives from the sender and the queue
is full, the new arrival is dropped. Packets may also be
dropped with a uniform probability on the way into each
queue; this is meant to simulate transmission line errors.
The receivers share a single channel on which to send
status packets to the sender. This reverse channel runs at
a rate of 500 packets per second, has a queue with
maximum length 50, and suffers the same transmission
line loss rate as the forward channels. The faster reverse
bandwidth is reasonable because status packets are much
shorter than data packets. Each link has a one-way
propagation delay of 50 milliseconds.

Figure 3 depicts BMTP recovering from an initial

overestimate of the network bandwidth. Ordinarily
BMTP would start at a low rate; the high initial rate in
this example is for illustration only. In this simulation
there are 100 receivers. The slowest receiver can receive
at 40 packets per second, and the rest receive at 100
packets per second. The graph’s x axis is time in seconds,
and the y axis indicates packets sent per second. The
upper line indicates the total number of packets the
sender sent in a second. The lower line indicates how
many of these were retransmissions. The sender starts
sending five times too fast, since it knows nothing about
network conditions initially; it keeps up this rate for one
measurement interval of twenty seconds. In ordinary
operation, some receiver would tell the transmitter to
slow down fairly quickly; however, the receivers do not
report their receive rates until they have observed them
for at least one measurement interval of 20 seconds. Thus
BMTP’s rate control mechanism begins to take effect at
time 21, at which point the sender immediately decreases
its rate. From then on the sender maintains a rate of about

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140

P
ac

ke
ts

 p
er

 S
ec

on
d

Time (Seconds)

Total
Retransmissions

Figure 3: BMTP Start-up

6

42 packets per second, just over the capacity of the
slowest receiver. Receivers start reporting losses at time
11; recall that they delay such reports for at least one
control interval in case the packet is late. Until time 115
the sender uses half the bandwidth for re-transmissions,
since over 3000 packets were lost when it was sending
too fast. The server is willing to devote no more than half
its bandwidth to re-transmissions. After time 120 the
sender only needs to re-send the 5% of packets lost
because it sends 5% too fast.

Figure 4 shows the effect of transmission line errors

on BMTP performance. Such errors might include
telephone line noise disrupting modem traffic. The x axis
indicates the percent of packets the simulator throws
away to simulate transmission line errors. Packets lost
due to queue overruns are not included in the x value, so
even at the origin of the graph, about five percent of
packets are being lost due to overruns. The y axis shows
total packets sent, and of those how many were re-
transmissions. Each point represents one 500 second
simulation run. The sender starts out at a send rate
slightly higher than 40 packets per second; thus the
expected number of packets sent in each simulated run is
roughly 21000. The simulation configuration is otherwise
as described in the previous paragraph.

The leftmost part of Figure 4 is not surprising. Even
with no transmission errors, the sender must re-send the
5% of packets lost due to queue overruns. Thus 1113 of
the 21000 packets were re-transmissions even when there
were no transmission errors; that is just over 5%. As the
error rate climbs towards 2%, the sender must re-send
correspondingly more packets. The re-send rate flattens
out briefly after 2% because the probability that two
receivers lose the same packet increases. Such double
losses are fixed by single re-transmissions. However, just
before 3% loss the sender’s overall transmission rate
abruptly decreases. The receivers reflect losses not just
with NAKs, but also in the receive rates they send back.

Whenever the sender sees a reported receive rate more
than 5% less than its current rate, it decreases the rate. So
any transmission error rate approaching 5% will cause the
sender to decrease its rate. If the losses were caused by
congestion, they would soon go away, if only because
BMTP decreases its offered load. However, transmission
errors don’t decrease when the load decreases. Thus a
high enough error rate causes the sender to gradually
decrease its send rate, even though it would be acceptable
for it to send faster. In practice, few IP networks have
transmission errors even as high as one percent. They
may experience more congestion loss than that, but
BMTP’s rate reduction algorithm reacts correctly to
congestion loss.

BMTP still works with 1000 users. Figure 5 shows

the effect of increasing numbers of receivers. Each point
in the top line represents the total number of packets sent,
and each point in the middle line the number which were
re-sends, during a 500 second simulation with the
indicated number of receivers. In each simulation, the
network bandwidth to one receiver was 40 packets per
second, and to all the others 100 packets per second. Each
receiver independently loses 1% of data packets because
of transmission errors. Just for this simulation the sender
always gives preference to retransmissions over sending
new data, and places no limit on the fraction of
bandwidth devoted to retransmission. From the fact that
the total is always just over 20000 packets, or 40*500, we
can conclude that the sender sustains the correct transmit
rate. The danger, which BMTP avoids, is that status
packets from the slowest receiver might not arrive at the
sender often enough, allowing the sender to increase its
bandwidth to the 100 packets/second available to all the
other receivers.

Note also that the sender never needs to devote more
than about half the bandwidth to re-transmissions. A
typical packet is lost by 1% of the receivers. Thus, for

0

5000

10000

15000

20000

25000

0 2 4 6 8 10

P
ac

ke
ts

 S
en

t

Percent Packet Loss

Total
Re-transmissions

Figure 4: Effect of Transmission Errors

0

5000

10000

15000

20000

25000

0 200 400 600 800 1000

P
ac

ke
ts

 S
en

t

Number of Receivers

Total
Re-transmissions w/o IDA
Re-transmissions with IDA

Figure 5: Effect of Many Receivers

7

1000 receivers, there is a danger that up to 10 receivers
might NAK each packet. Since the sender does not keep
track of which packets it has recently re-sent, it risks
using 90% of its bandwidth for re-transmissions. BMTP
avoids this problem because the receivers return status
packets one by one, not all at once. The expected interval
between times when different receivers NAK the same
lost packet is N/(40*N*1%), where N is the number of
receivers, 40 is the rate in packets per second, and 1% is
the packet loss rate. This comes out to 2.5 seconds. The
round trip time, including the maximum queueing time
and propagation delay of 50 milliseconds, is just over a
second. Thus the re-send triggered by one receiver’s
NAK typically arrives back at all the receivers before a
second receiver gets a chance to NAK the same packet.

All the simulations described above have asymmetric
receiver bandwidths: there is some slowest receiver.
BMTP would work poorly if all the receivers had
identical bandwidths and queue lengths. In such a case all
receivers would experience an independent 5% loss rate
caused by the sender transmitting 5% too fast. At least
one receiver would miss every packet, causing the sender
to devote half its bandwidth to retransmission. On the
other hand, if there is some slowest receiver, only that
receiver misses 5% of packets. Note that the weighting
mechanism allows that receiver to repair the misses. It’s
reasonable to expect that real networks (as opposed to
simulators) will exhibit such asymmetry.

7. Effects of IDA

Rabin’s Information Dispersal Algorithm (IDA) [9]
can be added to BMTP in a straightforward manner. IDA
allows correction of losses within a group ofm packets
with a number of retransmissions equal to the maximum
number of packets lost from the group by any one
receiver. For instance, if each receiver loses a different
two packets out of a particular group, the sender can
repair all the losses with just two IDA retransmissions.
This makes IDA particularly appropriate for multicast.
The ideas in the ensuing discussion all spring from the
original IDA paper.

BMTP with IDA treats successive groups ofm
packets’ worth of input data separately. Suppose a packet
holds 512 bytes. Instead of sending each packet’s worth
of data in a packet, BMTP with IDA sends a packet-sized
piece computed as follows:

b1 through b512m are one group of input data.v1

through vm are random numbers, chosen separately for
each piece sent. The sender placesp1 throughp512 andv1

through vm in a packet and multicasts it to all the
receivers. Ordinarily the sender does thism times for
each group of data, sendingm packets. Call thev andp
row-vectors the sender transmitsVi andPi for i from 1 to
m. The sender is essentially calculating the following, one
P andV at a time:

When a receiver has receivedm pieces for a group, it
reconstructs the original data thus:

If no packets are lost, this costs some extra cpu time
and the extra bandwidth required to send theV vectors.

Suppose a receiver fails to receive a packet from a
group, and thus is missing aV/P pair. In BMTP with
IDA, the receiver will ask the sender to send an additional
piece from the group. The sender calculates the additional
piece as described above. Since the newV vector is
randomly chosen, the new piece is unlikely to be the
same as any previous piece from the same group.
However, the equations above hold for anym pieces, so
the receiver will be able to reconstruct the group from
any combination ofm pieces. A receiver will keep
requesting new pieces for each group until it hasm; it
follows the rules previously described governing when it
is allowed to send status messages.

Now suppose two receivers received onlym-1 pieces
from a group, but missed different pieces. An ordinary
BMTP sender would have to re-send two packets to fix
this. IDA allows both losses to be fixed with one re-send:
the equations above allow the receivers to use any distinct
m pieces to reconstruct a group.

IDA does not help when fixing losses in different
groups, so a group should contain as many bytes as
possible. One could increase the piece size beyond 512
bytes to achieve this goal, but still send each piece in a
packet. However, the Internet fragments large packets
into small ones, and loss of any one fragment causes the
remainder of the packet to be useless. Thus it seems most
reasonable to avoid fragmentation by keeping pieces
small. Another approach to making groups large is to
make m large. The matrix multiplies needed to create
pieces and reconstruct the original data require O(m)

p1 … p512 v1 … vm

b1 … b511m 1+

… … …
bm … b512m

⋅=

P1

…
Pm

V1

…
Vm

b1 … b511m 1+

… … …
bm … b512m

⋅=

b1 … b511m 1+

… … …
bm … b512m

V1

…
Vm

1–
P1

…
Pm

⋅=

8

operations per byte. Thus large values ofm will consume
large amounts of CPU time. For purposes of
experimentation, BMTP with IDA uses groups ofm=5
pieces of 512 bytes each.

There is a chance that the matrix ofV vectors will
fail to invert. In this case, the receiver discards one
randomly chosen piece and ask the sender for a new one.
The sender could avoid this by choosingV vectors that
are linearly independent. The per-group state required in
the sender does not seem worth the added efficiency.

All of the arithmetic described above is carried out in
the field of integers mod 257. There are one too many
field members to encode in a byte. BMTP with IDA uses
an escaping mechanism to mark the extra value, which
increases the packet size slightly.

An implementation of BMTP with IDA on 120 mHz
Pentiums can send at four megabits bits per second, but
receive at only one megabit per second. Essentially all of
the time is in the matrix multiplies. The algorithms
involved could certainly be improved.

The simulation of Figure 5, when run with IDA and
m=5, results in about 28% re-sends with 1000 receivers,
rather than the 50% without IDA. One would expect
every group of five original packets to require roughly
one extra piece to fix losses: a re-send rate of 16%. For a
typical group, 50 receivers will need this extra piece. At a
one percent loss rate, roughly 60% of these extra pieces
will themselves be missed by one of the 50 receivers.
This implies a total re-send rate of 26%, which agrees
with the simulation result.

8. Further Work

Some of BMTP’s mechanisms could be improved. It
intentionally overloads the network by 5% in order to
detect spare capacity. While this is arguably in the
tradition of TCP, the impact could be decreased by a
periodic probing algorithm. BMTP can recover from the
5% loss due to that overload, as well as a loss rate of a
few percent due to transmission errors. Its tolerance to
transmission errors could be increased if the sender noted
any loss rate that persists despite substantial rate
reduction. BMTP uses fixed measurement and control
intervals, which slow its response to changing conditions;
these could be based on dynamic measurements of round
trip time. BMTP allows a fixed maximum weight for the
probability with which a receiver sends a status packet;
this maximum should be governed by the total number of
receivers.

More experience is needed with the interaction
between multiple BMTP sessions, and between BMTP
and other protocols.

BMTP leaves some decisions up to the application,
but lacks a well-defined interface with which an

application can declare its policies. An application may
wish to limit the maximum age of data BMTP should re-
send, or to ignore very slow receivers, or to ensure
complete reliability to a known set of receivers. BMTP
could enforce these policies if the application could ask it
to do so.

9. Conclusions

BMTP will allow applications like Netnews, mailing
lists, and mass software distribution to take advantage of
the Internet’s multicast system. It multicasts bulk data
with a reliability and capacity to scale not previously
available. It avoids overloading the network with data or
the sender with status packets. It sustains high throughput
even with a large number of receivers or a modest
transmission error rate. It usually avoids re-sending any
one lost packet more than once even if multiple receivers
missed it. BMTP achieves these effects by counting the
receivers, using this count to limit the rate at which
receivers can send status packets, and feeding rate
information back to the sender from the receivers.

References

[1] ARMSTRONG, S.,FREIER, A., AND MARZULLO, K. Multicast
Transport Protocol, RFC1301, 1992.

[2] BOLOT, J-C,TURLETTI, T., AND WAKEMAN , I. Scalable Feed-
back Control for Multicast Video Distribution in the Internet.
Proceedings of the Conference on Communications Architec-
tures, Protocols and Applications (ACM SIGCOMM 1994).

[3] DAKA , J.,AND WATERS, A., A High Performance Broadcast
File Transfer Protocol.Proceedings of the Conference on Com-
munications Architectures, Protocols and Applications (ACM
SIGCOMM 1988).

[4] DEERING, S., Multicast Routing in a Datagram Internetwork,
Ph.D. thesis, Stanford University, December 1991.

[5] FLOYD, S.,JACOBSON, V., MCCANNE, S.,LIU, C., AND
ZHANG, L. A Reliable Multicast Framework for Light-weight
Sessions and Application Level Framing.Proceedings of the
Conference on Communications Architectures, Protocols and
Applications (ACM SIGCOMM 1995).

[6] JACOBSON, V., Congestion Avoidance and Control.Proceed-
ings of the Conference on Communications Architectures, Proto-
cols and Applications (ACM SIGCOMM 1988).

[7] LIN, J.,AND PAUL, S. RMTP: A Reliable Multicast Transport
Protocol.IEEE INFOCOM 1996, March 1996.

[8] POSTEL, J., Transmission Control Protocol, RFC793, 1981.

[9] RABIN , M., Efficient Dispersal of Information for Security,
Load Balancing, and Fault Tolerance,Journal of the ACM, Vol-
ume 36, Number 2, Pages 335 to 348. ACM Press, New York,
1989.

[10] TALPADE, R., AND AMMAR , M. H., Single Connection Emu-
lation: An Architecture for Providing a Reliable Multicast Trans-
port Service,Georgia Institute of Technology College of
Computing Tech Report GIT-CC- 94-47, October 1994.

[11] WEINSTEIN, L., Broadcasting of Netnews and Network Mail

9

via Satellite,USENIX Conference Proceedings, 1984. [12] XTP Protocol Definition, Revision 3.6. Protocol Engines
Incorporated, Mountain View, CA, 1992.

