
Page 5 of 5

Fig. 9 shows how much switch buffer space is used when
one TCP sends into a slow link with credit flow control turned
on, for the configuration depicted in Fig. 2 (a). The flow
control system makes sure that enough cells are always buff-
ered that it can keep the output link busy, but never much more
than that. The large oscillations correspond to packet bound-
aries.

ATM flow control requires switch memory proportional to
the bandwidth-delay product of the links attached to the switch
[6]. In a local-area net with low propagation delays a few
dozen cells per VC might suffice, since this space would be
supplemented by large host memories. For this reason credit
flow control should scale well.

VI. CONCLUSIONS

Many investigators have noted that TCP performs worse
over cell-switched ATM than it does over packet-switched
networks. The experiments and analysis described here suggest
that this is caused by the particular pattern in which ATM
switches tend to drop cells. This pattern implies that non-flow
controlled, cell switches will likely drop more than one packet
in a row and as a result the efficient TCP fast transmission
mechanism for single lost packet will not apply.

While TCP performance can be made quite good using
packet switches, the amount of switch memory required is
often bounded below by packet size rather than the more
fundamental limit of bandwidth-delay product. A switch with
ATM-level flow control can achieve near-perfect link utiliza-
tion while approaching the minimum possible buffer use.

ACKNOWLEDGMENTS

This research was supported in part by BNR and Intel, and
in part by the Advanced Research Projects Agency (DOD)
monitored by ARPA/CMO under Contract MDA972-90-C-
0035 and by AFMC under Contract F19628-92-C-0116.

Fig. 9: Measured switch buffer occupancy when
one TCP sends into a slow link, as depicted in Fig. 2
(a), with credit flow control turned on.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 .001 .002 .003 .004 .005 .006 .007 .008 .009 .01S
w

itc
h

B
uf

fe
r

O
cc

up
an

cy
 (

B
yt

es
)

Time (Seconds)

REFERENCES

[1] Blackwell, et al. “An Experimental Flow Controlled
Multicast ATM Switch,” Proceedings of First Annual
Conference on Telecommunications R&D in Massachu-
setts, Vol. 6, October 25, 1994, pp. 33-38.

[2] Bonomi, F. and K. W. Fendick, “The Rate-Based Flow
Control Framework for the Available Bit Rate ATM
Service,”IEEE Network Magazine, Vol. 9, No. 2, March/
April 1995, pp. 25-39.

[3] CCITT, “Draft Recommendation I.363”, CCITT Study
Group XVIII, Geneva, 19-29 January 1993.

[4] Chran-Ham Chang et. al., “High-performance TCP/IP
and UDP/IP Networking in DEC OSF/1 for Alpha AXP,”
Digital Technical Journal, Winter 1993.

[5] V. Jacobson, “Congestion Avoidance and Control,” ACM
SIGCOMM 1988 Conference Proceedings, August 1988.

[6] H. T. Kung, T. Blackwell and A. Chapman, “Credit-
Based Flow Control for ATM Networks: Credit Update
Protocol, Adaptive Credit Allocation, and Statistical
Multiplexing,” SIGCOMM 1994, pp. 101-114.

[7] H. T. Kung and K. Chang, “Receiver-Oriented Adaptive
Buffer Allocation in Credit-Based Flow Control for ATM
Networks,” INFOCOM ’95, April 1995, pp. 239-252.

[8] H. T. Kung and A. Chapman, “The FCVC (Flow-
Controlled Virtual Channels) Proposal for ATM
Networks,” Version 2.0, 1993. A summary appears in
Proc. 1993 International Conf. on Network Protocols, pp.
116-127. (Postscript files of this and other related papers
by the authors and their colleagues are available via anon-
ymous FTP from virtual.harvard.edu:/pub/htk/atm.)

[9] H. T. Kung and R. Morris, “Credit-Based Flow Control
for ATM Networks,” IEEE Network Magazine, Vol. 9,
No. 2, March/April 1995, pp. 40-48.

[10] S. Leffler, et al.The Design and Implementation of the
4.3BSD UNIX Operating System, Addison-Wesley, 1989.

[11] G. Minden, V. Frost, J. Evans, and B. Ewy, “TCP/ATM
Experiences in the MAGIC Testbed,” ftp://
ftp.tisl.ukans.edu/pub/papers/TCP-Perform.ps.

[12] C. Ozveren, R. Simcoe, and G. Varghese, “Reliable and
Efficient Hop-by-Hop Flow Control,” SIGCOMM ’94,
pp. 89-100.

[13] A. Romanow and S. Floyd, “Dynamics of TCP Traffic
over ATM Networks,” ACM SIGCOMM 1994 Confer-
ence Proceedings, October 1994.

[14] G. Wright and W. R. Stevens,TCP/IP Illustrated, Volume
2, Addison-Wesley, 1995.

Page 4 of 5

beyond which there will be drop from the next packet, packet
i+1, will occur. The thick line in Fig. 7 shows how the vertical
position of the white circle is determined. Note that the∆ value
in Fig. 6 is greater than zero, as explained in the caption of Fig.
7. Therefore cells will be dropped from packeti+1.

With Partial Packet Discard, B will move to B’ in Fig. 7.
Thus C will move down somewhat but will still be above D.
Therefore the switch will have increased buffer space available
for packeti+1 but will still drop part of it. Experiments confirm
that Partial Packet Discard has only a marginal effect on effi-
ciency. Perhaps the reason for the good throughput perfor-
mance of Early Packet Discard in the simulation results [13] is
that it concentrates all the dropped cells into a single packet,
from which TCP’s fast-retransmit mechanism can recover.

 The same phenomenon occurs when two TCPs enter a
switch on different fast links and leave the switch sharing a

Fig. 6: Predicted graph of switch buffer space used
as TCP increases the window size over time. The
disks indicate when each packet starts to arrive. The
arrows point to dropping. The white circle indicates
the maximal switch buffer occupancy level beyond
which a drop from packet i+1 will occur.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5S
w

itc
h

B
uf

fe
r

O
cc

up
an

cy
 (

P
ac

ke
ts

)

Time (Packet Arrival Times at Switch Buffer)

Actual
No Drops

Packet Arrival Times

∆ > 0

Drop from
Packeti

Drop from
Packeti+1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5S
w

itc
h

B
uf

fe
r

O
cc

up
an

cy
 (

P
ac

ke
ts

)

Time (Packet Arrival Times at Switch Buffer)

Actual
Packet Arrival Times

A B
C

D

Fig. 7: A proof that the∆ value in Fig. 6 is greater
than zero by noting that B is to the right A and thus
C is above D. The dotted line has its slope equal to
the output rate of the switch buffer.

B’

slower link. The TCPs rarely compete against each other. Both
spend most of their time in retransmit time-outs; whenever
either starts to send, it almost immediately opens its window
far enough that the switch drops multiple packets.

V. TCP PERFORMANCE WITH A TM
FLOW CONTROL

ATM-level credit flow control resolves these TCP perfor-
mance problems over ATM as described in the preceding
section. The bottleneck switch no longer discards data when it
runs out of buffer memory. Instead, it withholds credit from the
switches and/or hosts upstream from it, causing them to buffer
data instead of sending it. This backpressure can extend all the
way back through a network of switches to the sending host.
The effect is that a congested switch can force excess data to be
buffered in all the upstream switches and in the source host.
Data need never be lost due to switch buffer overrun. Thus if
TCP chooses a window that is too large, the data will simply be
buffered in the switches and in the host; no data loss and
retransmission time-outs will result.

Fig. 8 compares the useful bandwidths achieved with and
without credit-based ATM-level flow control in the configura-
tions shown in Fig. 2. For the flow-controlled cases, the switch
has 100 cell buffers (4800 payload bytes) reserved per VC. For
the non-flow-controlled cases, the switch has 682 (32 payload
kilobytes) of buffering per VC. Recall that for the configura-
tion in Fig. 2 the slow link can deliver at most 5.7 payload
megabytes per second, and the fast link 17. Thus in both one
TCP and two TCPs cases, TCP with credit-based flow control
achieves its maximum-possible bandwidth.

Using a configuration similar to Fig. 2 (b), experiments
involving one TCP and one UDP instead of two TCPs have
also been carried out. A typical measured result is as follows.
When ATM-level credit-based flow control is used, UDP gets
its maximum bandwidth only limited by the source, while TCP
gets essentially the remaining bandwidth of the bottleneck link
between the two switches. However, when credit-based flow
control is turned off, TCP’s throughput is significantly dropped
and the total utilization on the bottleneck link by both TCP and
UDP reduces to be less than 45%. Thus, when competing with
UDP, TCP with ATM-level flow control can keep up its
throughput even though UDP does not reduce its bandwidth
during network congestion.

Without Flow
Control

With Flow
Control

(a) One TCP 0.1 MByte/sec 5.7 MByte/sec

(b) Two TCPs 0.2 MByte/sec 5.7 MByte/sec

Fig. 8: Measured total bandwidth achieved with
and without ATM-level credit-based flow control,
for the (a) and (b) configurations of Fig. 2.

Page 3 of 5

pauses. These pauses are due to retransmission time-outs
caused when TCP’s window [5] exceeds the switch’s buffer
space. This happens within a few tens of milliseconds after
TCP starts to retransmit each time: TCP can send a window in
less than 10 milliseconds, and the window increases by one
packet per window sent. Thus after TCP sends a few windows
of data, the switch drops some packets because the window is
larger than the buffer space. Since TCP’s minimum time-out is
at least one second, TCP spends far more time waiting to
retransmit than it does sending data. The inactivity period of
more than 2 seconds in Fig. 4 is likely caused by the TCP
exponential back-off triggered by the loss of some retrans-
mitted packet.

TCP running through packet switches, which queue and
switch packets rather than cells, does not suffer from this
problem. Each time TCP increases its window size to be one
packet too large for the switch, the packet switch typically
drops only one packet. TCP can efficiently detect and recover
from a single lost packet with a mechanism called fast
retransmit [14], which will decrease the window size and re-
send the lost packet with very little pause.

Why doesn’t fast retransmit work over ATM? Fig. 5 plots
switch buffer occupancy in bytes, measured on the ATM
switch in the configuration of Fig. 2 (a), just as a TCP connec-
tion is opening its window enough that the switch must drop
data. Again, the switch input runs at 155 Mbps, the output at
53, and there are 32K bytes of buffer space available. Each
peak is caused by the back-to-back arrival of a pair of packets
at the full input rate. The peaks are spaced out because packets
leave (and are acked and thus new ones transmitted) at the
slower output rate. The window increase happens just before
time 0.21. The two disks above the buffer use line indicate
times at which the switch hardware indicated it was dropping
cells. Each disk represents a few dozen lost cells.

The behavior depicted by Fig. 5 is typical: the switch typi-
cally drops cells from two packets when TCP opens its window
too far. Since fast retransmit reliably recovers from only one

Fig. 4: Measured TCP bandwidth over time show-
ing time-outs, for the configuration of Fig. 2 (a),
with 64Kbyte TCP window and 32Kbyte switch
buffer.

0

2000

4000

6000

8000

10000

12000

14000

16000

170 172 174 176 178 180

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
ec

on
d)

Time (Seconds)

1.5 Seconds lost packet, it leaves a lot of bandwidth unused while it times
out.

Intuitively, TCP has increased its window or the amount of
data it wants the switch to buffer by one packet. Since the
switch hasn’t enough space, it must discard up to one packet’s
worth of data. A packet switch would drop one entire packet.
But the ATM switch does not know about packets, so it typi-
cally drops a packet’s worth of cells spread over multiple
packets.

A more formal argument that drops from multiple packets
are common can be made. Assume that under the old window
size, some number of cellsN will be free just after the end of
each packet’s arrival, and thus the switch buffer has enough
space to accommodate the future arrival ofN cells plus one
packet just before each packet arrives. When TCP increases its
window by a packet, the switch can buffer the firstN cells of
this packet but must drop some of the rest. Since at leastN
extra cells are buffered, at most one packet’s worth of buffer is
available when the next packet arrives. If the next packet is
even one cell early, some of it must be dropped.

Figure 6 illustrates the situation predicted by this argument.
It plots predicted (not measured) switch buffer use as a func-
tion of time, much like Fig. 5. In this graph, however, time is
measured in packet arrival times at the switch buffer, and the
vertical axis in packets worth of switch buffering. The input to
the switch buffer runs at three times the speed of the output.
The disks mark the times at which the sender starts to send a
packet; the packet transmitted at time 2.333 (packeti in Fig. 6)
is the extra packet in a growing window. The dashed line
shows what would happen if there were no limit on buffer
space. The solid line shows what happens in a switch that can
buffer only two packets. The first half of packeti is buffered.
Some of the second half is dropped, but some is buffered since
the switch is transmitting at the same time.These fragments
cause the switch buffer to overflow again when the packet sent
at time 3 arrives. In this way two packets are damaged

A precise explanation is given as follows. The white circle
in Fig. 6 indicates the maximal switch buffer occupancy level

Fig. 5: Measured switch buffer occupancy as TCP
increases the window size over time. The disks
mark dropped cells.

22000

24000

26000

28000

30000

32000

34000

0.19 0.195 0.2 0.205 0.21 0.215 0.22 0.225 0.23

S
w

itc
h

B
uf

fe
r

O
cc

up
an

cy
 (

B
yt

es
)

Time (Seconds)

Page 2 of 5

One of the switches now operates on site at Harvard Univer-
sity.

III. EXPERIMENT AL
CONFIGURATIONS

The experiments described below use two network configu-
rations in a local area network environment. The first, shown in
Fig. 2 (a), involves host A sending a continuous stream of data
through the switch to host B. Host A’s link to the switch runs at
155 megabits per second (Mbps), while host B’s link runs at
only 53, enforced by a properly programmed scheduler on the
link input. This is one of the simplest configurations in which
congestion occurs. Note that after SONET and ATM overhead,
a 155-Mbps link can deliver roughly 134 Mbps or 17 mega-
bytes per second of useful payload to a host. A 53-Mbps link
can deliver about 5.7 megabytes per second.

The second configuration, shown in Fig. 2 (b), involves
four hosts. Host A sends data to host C, and host B to host D.
The four host links run at 155 Mbps, and the bottleneck link
between the switches runs at 53 Mbps. The purpose of this
configuration is to show how two conversations interact.

The hosts in all these experiments are DEC Alpha 3000/400
workstations running OSF/1 V3.0. The OSF/1 TCP implemen-
tation [4], used in all the experiments reported in this paper, is
derived from 4.3-Reno [14]. This TCP tends to acknowledge,
and thus transmit, pairs of packets. The TCP window size for
these experiments is limited to no more than 64K bytes, and
the packet size 9180 except when noted. The workstations use
155-Mbps OTTO TurboChannel adapters provided by DEC.
The Alphas can send or receive TCP using the OTTOs at about
15 megabytes per second. The OTTO drivers optionally imple-
ment CreditNet’s credit-based flow control partially in soft-
ware; with credit turned on they can send and receive TCP at
13 megabytes per second.

Host A

(a)

(b)

Host B

Host B

Host A Host C

Host D

155 Mbps 53 Mbps

155 Mbps 155 Mbps

53 Mbps

Fig. 2: (a) Network configuration for single TCP
experiments on CreditNet; and (b) configuration for
two competing TCPs. The circles are switches. Each
darkened bar denotes a switch port.

The measurements are all directly derived from the instru-
mentation counters in the CreditNet switch hardware. The
hardware keeps track of the total number of cells sent by each
VC and the number of cells buffered for each VC. For all the
experiments reported in this paper, Partial Packet Discard is
not turned on. Some discussion on its impact is given in
Section IV.

IV. TCP PERFORMANCE WITHOUT
ATM FLOW CONTROL

One of the simplest situations in which TCP has trouble
over ATM without ATM-level flow control involves a host
with fast link to a switch sending to a host with a slower link.
This configuration is depicted in Fig. 2 (a). Fig. 3 shows useful
throughput or “goodput” for a range of switch buffer sizes and
packet sizes. As noted above, the maximum obtainable band-
width on the bottleneck link is 5.7 megabytes per second after
SONET and ATM overhead. The switch buffer sizes account
only for the memory used by the 48-byte payloads of ATM
cells.

Regardless of packet size, TCP performs badly unless the
amount of buffer space is close to an entire 64Kbyte window,
the maximum amount of data TCP will send before pausing to
wait for an acknowledgment. Performance is good at slightly
less than 64K because a few packets are effectively stored in
the hosts and adapter cards. The OTTO host adapter buffers
one packet in on-board memory during both transmission and
reception, and thus will buffer more bytes when packets are
large. The fact that large packets have better performance than
small in Fig. 3 is caused only by this storage of packets in the
hosts and adapters, and not to any deeper advantage.

Figure 4 shows the TCP bandwidth achieved over time by a
single connection with 9180-byte packets and 32Kbytes of
switch buffer space. With much less than 64K of switch buff-
ering, TCP sends small bursts of data separated by 1.5-second

Fig. 3: Measured TCP performance with varying
packet size (MTU) and switch buffer space, for the
configuration of Fig. 2 (a). The dots indicate the
points where experiments were run.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 10000 20000 30000 40000 50000 60000 70000

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
ec

on
d)

Switch Buffer Size (Bytes)

MTU=2048
MTU=4096
MTU=9180

Page 1 of 5

Abstract -- Measurements on an experimental ATM switch in a
local area network have demonstrated significant performance
gains for TCP traffic with ATM-level flow control. Without
flow control, buffer overruns at ATM switches feeding into
bottlenecks can prevent TCP from using more than a few
percent of the potential bandwidth. A detailed analysis of the
cell loss patterns that foil TCP’s loss recovery strategy is
presented. With flow control, efficiency is nearly perfect. ATM
flow control prevents cell loss due to congestion, and as a
result TCP can avoid retransmit time-out delays and maintain a
high transmission rate.

I. INTRODUCTION

A good deal of traffic over future ATM networks may well
use existing transport protocols such as TCP/IP. TCP has its
own window-based flow control mechanism which interprets
lost or delayed packets as evidence of congestion. Switch-
based ATM networks will be orders of magnitudes faster than
most existing networks but many ATM switches are expected
to have relatively limited buffer space; how well will TCP
work in this situation? Can TCP still be reasonably efficient
and fair? If not, how to solve the problem?

There have been many studies and papers [11, 13]
addressing these questions. Some have noted potential perfor-
mance degradation of TCP over ATM, but few have addressed
the underlying causes.

This paper studies the impact of ATM switches and ATM-
level flow control [2, 9] on TCP performance, and offers
detailed explanation and analysis. These results are based on
performance measurements obtained from an experimental
ATM switch developed by Harvard and Bell-Northern
Research (BNR).

II. CREDITNET A TM SWITCH

BNR and Harvard have jointly developed an experimental
ATM switch called CreditNet [1], with both 622 megabits per
second (OC-12) and 155-Mbps (OC-3) ports. Unique features
of the switch include ATM-level credit-based flow control [7,
8, 9, 12], per-VC (per virtual circuit) queueing, round-robin
VC scheduling, multicast support in hardware, highly
programmable microprocessor-based switch port cards, and
built-in instrumentation for performance measurement.

CreditNet’s flow control mechanism reserves buffer space
in each switch for each VC. As depicted in Fig. 1, the switches

send “credits” upstream (towards the data sender) reflecting the
amount of unused space in each VC’s reserved buffer area. A
switch or host will only send data on a VC if the VC has credit;
that is, if the downstream switch or host along the VC’s path
has unused buffer space reserved for the VC. Flow control thus
can avoid data loss due to congestion.

The CreditNet switch implements Partial Packet Discard as
an option.This means that when the option is turned on, once
the switch drops a cell from a packet, it will keep dropping
cells until the end of the packet, whether or not it could buffer
the cells. To allow the destination host to detect the start of the
next packet, the switch does not drop the cell that marks the
end of the current packet unless the switch is still out of
memory. The Partial Packet Discard feature should be distin-
guished from Early Packet Discard [13], in which the switch
decides whether to drop the entire packet when the first cell of
the packet arrives. If the switch does not have roughly one
packet’s worth of space available, the entire packet is
discarded.

As of the first quarter of 1995, five of these switches have
been built. The switches have successfully interoperated, over
SONET links, with several commercial or experimental ATM
host adapters including those from DEC (for TurboChannel),
Sun (S-Bus), Intel (PCI) and Zeitmet (PCI). Both the OC-3 and
OC-12 links have been used in applications. In addition, a
Q93B signalling system has been implemented on the switch.

 VC Buffer

Switch 2

VC2

VC1

Host 3
Host 2

Switch 1

Fig. 1: Credit-based flow control applied to each
link of a VC.

Credit

Credit

Credit

Data
Credit

Data

Data
Data

Host 1

Credit
Data

IMPACT OF ATM SWITCHING AND FLOW CONTROL ON
TCP PERFORMANCE: MEASUREMENTS ON AN EXPERIMENTAL SWITCH

R. Morris and H. T. Kung

The authors are with the Division of Applied Sciences
Harvard University, USA

GLOBECOM’95, November 1995

