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Abstract—
The packet lossesimposedby IP networks cancauselong and erratic re-

covery delays,sincesendersmust often useconservative lossdetectionand
retransmissionmechanisms.This paper proposesa model to explain and
predict lossrates for TCP traffic. Basedon that model, the paper describes
a new router buffering algorithm, Flow-Proportional Queuing (FPQ), that
handlesheavy TCP loads without imposing high lossrates. FPQ controls
TCP by varying the router’s queuelength in proportion to the number of
active TCP connections. Simulation resultsshow that FPQ producesthe
same average transfer delays as existing schemes,but makes the delays
more predictableand fairer.

I . INTRODUCTION

The traditional role of buffer spacein Internetroutersis to
absorbtransientimbalancesbetweenofferedloadandcapacity.
Choosingtheamountof buffer memoryhasbeensomethingof
a black art: too little risks high lossratesandlow link utiliza-
tion, too muchrisks long queuingdelays. Currentpracticefa-
vors limiting buffer spaceto no morethanis requiredfor good
utilization. Theresultis thatrouterscontrolcongestionby inten-
tionally discardingpacketswhentheirqueuesaretoolong. Most
Internettraffic sourcesrespondto lossby decreasingtherateat
which they senddata,so limited buffering and loss feedback
mayappearto bea reasonableapproachto congestioncontrol.

In contrast,thispaperarguesthatrouterqueuelengthsshould
vary with thenumberof active connections.TheTCPprotocol
thatcontrolssources’sendratesdegradesrapidly if thenetwork
cannotstoreat leasta few packetsperactive connection.Thus
theamountof routerbuffer spacerequiredfor goodperformance
scaleswith the numberof active connections.If, asin current
practice,thebuffer spacedoesnot scalein this way, theresultis
highly variabledelayon ascaleperceptibleby users.

Thesimultaneousrequirementsof low queuingdelayandof
large buffer memoriesfor large numbersof connectionspose
a problem. This papersuggeststhe following solution. First,
routersshouldhavephysicalmemoryin proportionto themaxi-
mumnumberof activeconnectionsthey arelikely to encounter.
Second,routersshouldenforceadroppingpolicy aimedatkeep-
ing theactualqueuesizeproportionalto theactualnumberof ac-
tiveconnections.Thisalgorithm,referredto hereasFPQ(Flow-
ProportionalQueuing),automaticallychoosesa good tradeoff
betweenqueuingdelayandlossrateoverawide rangeof loads.

FPQ provides congestionfeedback using queuing delay,
which it makes proportional to the number of connections.
TCP’s window flow controlcausesit to sendat a rateinversely
proportionalto the delay. Thus the combinationof TCP and
FPQcauseseachTCPto sendat a rateinverselyproportionalto

thenumberof TCPssharinga link, just asdesired.
Simulationsunder heavy load show that FPQ producesa

fairer distribution of delaysthan lossfeedback:every transfer
seesthe samequeuingdelay in FPQ, whereasloss feedback
sharplysegregatestransfersinto unlucky ones(which seetime-
outs)andlucky ones(whichdonot). FPQ’sdelayfeedbackpro-
ducesthe sameoverall delayasthe timeoutsproducedby loss
feedback.

The rest of this paperhasthe following organization. Sec-
tion II demonstratesthat TCP is unfair anderraticunderhigh
lossrates.SectionIII presentsa modelexplaininghow network
load affectslossrate. SectionIV describesthe FPQalgorithm
for copingwith heavy network loads.SectionV evaluatesFPQ’s
performancewith simulations. SectionVI relatesFPQto pre-
vious work in queuingand congestioncontrol. Finally, Sec-
tion VII summarizesthepaper’s results.

I I . TCP BEHAVIOR WITH HIGH LOSS RATES

A TCP [1] sendersetsthe rateat which it sendsdatausing
window flow control. It ordinarilysendsonewindow of packets
per roundtrip time. TCPadjustsits window sizeto reflectnet-
work conditionsasfollows[2]. EachtimeTCPsendsa window
of packetsit increasesthewindow sizeby onepacket. Eachtime
TCPdecidesthatthenetwork hasdiscardeda packet, it cutsthe
window in half. TCPcandetectlost packetsquickly using“f ast
retransmit”[3] aslong asthe window is larger than3 packets.
WhenfastretransmitfailsTCPfalls into a conservativeretrans-
missiontimeoutof a secondor more.Thuslossaffectsdelayin
two ways:by decreasingTCP’swindow sizeandsendrate,and
by forcingTCPinto timeouts.

Figure1 shows the effect of losson averagetransferdelay.
The graph is the result of NS-1.4 [4] simulationsat different
uniform loss rates,using 20-packet transfers,TCP Tahoe[3],
no delayedacks,anda 0.1 secondround-trippropagationtime.
Theseresultsaresimilar to thoseproducedby Cardwell’smodel
for shortconnections[5].

Thereis nothingvery surprisingin Figure1: asthe lossrate
increases,TCPslows down. Hiddenby theaverages,however,
are significantly skewed distributions, illustratedby Figure 2.
Eachof theplotsshows thecumulative distribution of thetime
requiredto completesimulated20-packet transfersat particular
lossrates.For example,with a lossrateof 10%,about40%of
transferscompletedin lessthana second;5% of the transfers
took more than10 seconds.The 40% correspondto transfers
thatexperiencedno timeouts.The“steps”arecausedby TCP’s
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Fig. 1. Effect of losson transferdelay. From simulationsof 20-packet TCP
transfersunderuniformpacket loss.
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Fig. 2. Distribution of delaysrequiredfor 20-packet TCPtransfers.Eachplot
correspondsto adifferentuniform lossrate.

useof retransmissiontimerswith 0.5-secondgranularityandby
exponentialretransmissionbackoff.

Thedelaydistributionsin Figure2 areheavy tailed. For ex-
ample,thedistribution for a lossrateof 15%matchesthePareto
distribution

P
�
X � x ��� 1 ��� 4 	 x 
 1 � 8

Figure3 shows theclosenessof thecomplementsof thetails of
the actualandParetodistributions. The tail is heavy because
TCPdoublesits retransmissiontimeoutinterval with eachsuc-
cessiveloss.Thismeansthatwhenthenetwork dropspacketsto
forceTCPsto slow down, thebulk of theslowing is doneby an
unlucky minority of thesenders.

Whatwewouldliketo seein Figure2 is that,atany givenloss
rate,mosttransfersseeaboutthe samedelay. This would pro-
vide fair andpredictableserviceto users.In contrast,Figure2
showsthathighlossratesproduceerraticandunfair delays.The
first steptowardsimproving the delaydistribution is to under-
standthecausesof high lossrates.
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Fig. 3. Tail of thecomplementarytransferdelaydistribution for 15%lossrate,
comparedto aheavy-tailedParetodistribution.

I I I . LOAD AND LOSS RATE

The following function approximatesthe averagewindow
size(w) thatTCPuseswhenfacedwith aparticularaverageloss
rate(l):

w � 0 � 87
l

(1)

This formula is adaptedfrom Floyd [6] andMathis et al. [7];
moredetailedapproximationscanbefoundin Padhyeet al. [8]
andCardwellet al. [5].

Equation1 canbeviewedin two ways. First, if thenetwork
discardspacketsat a rate independentof the sender’s actions,
Equation1 describeshow the senderwill react. Second,if the
network canstoreonly a limited numberof packets,Equation1
indicatesthelossratethenetwork mustimposein orderto make
TCP’swindow fit in thatstorage.Wecanrearrangetheequation
to emphasizethisview:

l � 0 � 76
w2 (2)

As asimpleexampleof theuseof Equation2, considerasin-
gleTCPsendingthroughbottleneckrouterthatlimits thequeue
lengthto 8 packets.Ignoringpacketsstoredin flight, theTCP’s
window mustvarybetween4 and8 packets,averaging6. Equa-
tion 2 impliesthat thenetwork mustdiscard2.1%of theTCP’s
packets. Thenetwork usesthis lossrateto tell TCPthecorrect
window size.

Considernext N TCPssharinga bottlenecklink with queue
limited to S packets.TheTCPs’window sizesmustsumto S, so
thatw � S 	 N. Substitutinginto Equation2 yieldsan approxi-
matelossrateprediction:

l � 0 � 76
N2

S2
(3)

For bottleneckssharedby many TCPs,Equation3 suggests:� The “meaning” that the loss rate conveys back to sending
TCPsis theper-TCPshareof thebottleneckstorage.Thelosses
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aTCPencountersreflecttheaggregatesituation,not its own ac-
tions.� Load, in the senseof “heavy load causeshigh lossrates,” is
sensiblymeasuredby the numberof competingTCP connec-
tions.� A bottleneck’s capacity, or ability to handleload, is deter-
minedby its packetstorage.

A. Limitations

Equation1, andall theequationsderivedfrom it, areonly ac-
curatewith certainassumptions.ThecompetingTCPsmustbe
making transfersof unlimited duration. The sendingapplica-
tionsmustalwayshave dataavailableto send.TheTCPsmust
all belimited only by thebottleneckunderconsideration.

Theequationsarenot accurateif thelossrateis high enough
thatTCP’s behavior is dominatedby timeouts.Part of thepoint
of this paperis that appropriatebuffering techniquescanhelp
avoid suchhigh lossrates.

The amountof storageavailable in the network actually in-
cludespacketsstoredin flight on the links as well as packets
queuedin routers.Thisnumberis thesum,overall theTCPs,of
eachTCP’s shareof thebottleneckbandwidthtimesthe TCP’s
propagationround-trip time. If the TCPshave similar round
trip times,thelink storageis thebottleneckbandwidthtimesthe
roundtrip time. Thusthepropervaluefor S in Equation3 is this
link storageplustherouter’squeuebuffers.

A further restrictionon S is that it must reflect the average
numberof packetsactuallystoredin thenetwork. In particular
it mustreflecttheaverageactualqueuelength,whichis nottypi-
cally thesameastherouter’smaximumqueuelengthparameter.
ThusEquation3 mustbetailoredto suit particularqueuingand
droppingstrategies,thesubjectof SectionIII-B.

Subject to the restrictionsand correctionsoutlined above,
Equation 3 producespredictionsthat closely match simula-
tions[9].

B. Specialization to RED

Equation3 mustbemodifiedto reflectany particularqueuing
system’squeuelengthmanagementpolicy. Consider, for exam-
ple, RandomEarly Detection(RED) [10]. RED discardsran-
domly selectedincomingpacketsat a ratesetby this simplified
formula:

l � qa

maxth
maxp (4)

qa is the averagequeuelength over recent time, maxth is a
parameterreflecting the maximumdesiredqueuelength, and
maxp is a parameterreflecting the desireddiscardrate when
qa � maxth.

If thereareN competingTCPs,theneachTCP’swindow size
will averageroughly w � qa 	 N. We cancalculatethe discard
raterequiredto achievethis w usingEquation2:

l � 0 � 76
N2

qa
2

(5)

CombiningEquations4 and5 to eliminatel andsimplifying
resultsin this estimateof theaveragequeuelength:

qa � 0 � 91N2 � 3maxth
1� 3

maxp
1� 3

(6)

A RED routerworks bestif qa never exceedsmaxth, so that
the router is never forced to drop 100% of incoming packets.
Equation6 impliesthattheparametervaluesrequiredto achieve
this goal dependon the numberof active connections.This is
a formalizationof anideausedby ARED [11] andSRED[12],
which keepqa low by varying maxp asa function of N. The
observationthatonecouldinsteadvarymaxth andfix maxp isone
wayof lookingat theFPQalgorithmpresentedin SectionIV of
this paper.

C. Discussion

Many existingroutersoperatewith limited amountsof buffer-
ing. Onepurposeof buffering is to smoothfluctuationsin the
traffic, sothatdatastoredduringpeakscanbeusedto keepthe
link busyduring troughs.Recommendationsfor theamountof
bufferingrequiredto maximizelink utilizationrangefrom afew
dozenpackets[13] to a delay-bandwidthproduct[14].

Smallfixedlimits onqueuelengthcauseS in Equation3 to be
constant,andforcethe lossrateto increasewith thenumberof
competingTCPconnections.To a certainextent this is reason-
able:asthelossrateincreases,eachTCP’swindow shrinks,and
eachTCP sendsmoreslowly. The rate(r) at which eachTCP
sendspacketscanbederivedfrom Equation1 by dividing by the
roundtrip time (R):

r � 0 � 87

R


l
(7)

Thebottleneckroutervariesl in orderto makether valuesfrom
thecompetingTCPssumto thebottleneckbandwidth.

Theproblemwith this approachis thatTCP’s window mech-
anismis not elasticwith small windows. First, the granularity
with which TCP canchangeits rateis coarse.A TCP sending
two packetsperroundtrip time canchangeits rateby 50%,but
not by smallerfractions.Second,a TCPcannotsendsmoothly
at rateslessthanonepacketperroundtrip time; it canonly send
slower thanthatusingtimeouts.Worse,TCP’s “f ast-retransmit”
mechanism[3] cannotrecoverfrom apacketlosswithoutatime-
outif thewindow sizeis lessthanfourpackets.If TCP’swindow
is always to be 4 or more packets, its divide-by-two decrease
policy meansthewindow mustvarybetween4 and8, averaging
six packets.

TCP’s inelasticityplacesa limit on thenumberof activecon-
nectionsaroutercanhandlewith afixedamountof buffer space.
Onewayto look at thisproblemis thatthenetwork muststoreat
leastsix packetsperconnection.Anotherview is thatTCPhasa
minimumsendrateof six packetsperroundtrip time,placingan
upperlimit on thenumberof connectionsthatcansharea link’s
bandwidth.Theresultof exceedingtheselimits is theunfair and
erraticbehavior illustratedin SectionII.



4

IV. FLOW-PROPORTIONAL QUEUING

TCPworkswell only if thenetwork is willing to storeroughly
six packetsperactive connection.Oneway to satisfythis con-
straintis for all routersto beprovidedwith enoughbuffer space
to copewith the maximumnumberof expectedconnections.
Connectioncounts,however, vary greatly from placeto place
and from time to time [15]. The penalty for providing more
buffer spacethan required is excessive queuingdelay, since
TCP’s window mechanismtries to keepall buffer spaceoccu-
pied.Thuswithoutconstantmanualtuningthisapproachwould
requireanuncomfortablechoicebetweenexcessive timeoutde-
laysandexcessivequeuingdelays.

What is needed,then,is a way to keepthequeuelengthpro-
portionalto theactualnumberof activeconnectionsatany given
time. A routercoulddo this by imposinga constantpacket loss
rate, regardlessof queuelength. One would choosethe loss
ratesothatEquation1 resultedin a window sizelargerthanthe
four packetsrequiredto avoid timeouts.SinceeachTCPwould
contribute a constant-sizedwindow of packets to the router’s
queue,theresultingsystemshouldadaptively imposethemini-
mumqueuelengthrequiredto keeptheTCPsfrom falling into
timeouts.

Imposinga constantloss rate would causethreeproblems.
First, if the numberof connectionsis small, the loss ratemay
needto bereducedto allow window sizeslargeenoughto keep
the link busy. Second,routersthat arenot bottlenecksshould
not imposeany lossrate.Third, if typicalpathsthroughthenet-
work involvemultiple bottlenecks,eachsuchbottleneckshould
imposeonly its shareof thetotal desiredlossrate.

All threeof theseproblemscanbesolvedif eachroutermain-
tainsa countof theactive connectionssharingeachof its links.
This countcanbe usedto detectthe problemsandcorrectthe
loss rateaccordingly. The following sectionsdescribethe de-
tailsasimplementedin aqueuecontrolalgorithmcalled“Flow-
ProportionalQueuing,” or FPQ.

A. Counting Connections

FPQcountsactive TCPconnectionsasfollows. It maintains
a bit vector called v of fixed length. When a packet arrives,
FPQhashesthepacket’sconnectionidentifiers(IP addressesand
port numbers)andsetsthe correspondingbit in v. FPQclears
randomlychosenbits from v at a ratecalculatedto clearall of v
every few seconds.Thecountof setbits in v approximatesthe
numberof connectionsactive in the last few seconds.Figure4
containspseudo-codefor this algorithm. The FPQsimulations
in SectionV usea 5000-bitv anda clearinginterval (tclear) of 4
seconds

Thecodein Figure4 mayunder-estimatethenumberof con-
nectionsdueto hashcollisions.This errorwill besmall if v has
significantlymorebits thanthereareconnections.The sizeof
theerrorcanalsobepredictedandcorrected;see[9].

This methodof countingconnectionshastwo goodqualities.
First, it requiresno explicit cooperationfrom TCP. Second,it
requiresvery little state:on theorderof onebit perconnection.

connectioncount(packet p)
h � H � p �
if v � h ��� 0

v � h ��� 1
N � N � 1

t � currenttime
nclear � vmax

t � tlast
tclear

if nclear � 0
tlast � t
for i � 0 to nclear � 1

r � random � 0 ��� vmax � 1 �
if v � r ��� 1

v � r ��� 0
N � N � 1

return(N)

Variables:
v � i � Vectorof vmax bits. v � i � indicatesif a packet from a connection

with hashi hasarrivedin thelasttclear seconds.
N Countof onebits in v.
tlast Timeatwhichbits in v werelastcleared.
r Randomlyselectedindex of abit to clearin v.

Constants:
vmax Sizeof v in bits; shouldbe larger thanthenumberof expected

connections.
tclear Interval in secondsover which to clearall of v.
H � p � Hashesa packet’s connectionidentifying fields to a valuebe-

tween0 andvmax.

Fig. 4. Connection-countingpseudo-code.

target queue(N)
qt � max � P

2N � 1 � 6N �
return(qt )

target loss(qt , N)

lt � min �! 0 " 87
qt # P

N $ 1 % 2 � 0 � 021&
return(lt )

Fig. 5. Pseudo-codeto choosethetargetqueuelengthandpacket discardrate.
The N parameteris the currentcountof active TCP connections,ascom-
putedin Figure4. P is anestimateof thenetwork’sdelay-bandwidthproduct
in packets.

B. Choosing Target Queue Length and Drop Rate

Oncean FPQ router knows how many connectionsare ac-
tive, it choosesa targetqueuelengthin oneof two ways. If the
numberof connectionsis relatively large, FPQaims to queue
six packetsperconnection.Six packetsarejustenoughto avoid
forcing connectionsinto timeout.Thecorrespondingtargetloss
rate,derivedfrom Equation2, is 2.1%.

If therearetoofew connections,however, 6 packetbuffersper
connectionmaybetoo few to keepthelink busy. For example,
supposethat thereis oneconnection,that the delay-bandwidth
productis P packets,andthattherouterbuffersup to S packets.
TheTCP’swindow sizewill varybetween� S ' P 
(	 2 andS ' P.
If S ) P, theTCPwon’t beableto keepthelink busyaftereach
window decrease.With N connections,theremustbe enough
buffer spacethatS *+� S ' P 
(	 2N.

Figure5 summarizesthecalculationsrequiredto chooseatar-
get queuelength(qt). The correspondingtargetpacket discard
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adjustedloss rate(lt , qt, qa)
la � lt, qa

qt
return(la)

Fig. 6. Pseudo-codeto adjustthe discardratein casethe actualqueuelength
divergesfrom thetarget. la is theadjusteddiscardrate.Theparameters:lt is
thetargetlossrate,qt is thetargetqueuelength,andqa is theactualaverage
queuelength.

fpq(packet p)
N � connectioncount(p)
qt � target queue(N)
lt � target loss(qt , N)
qa � averagemeasuredqueuelength.
la � adjustedloss rate(lt , qt, qa)
if(random() - la)

Discardthepacket.
else

Enqueuethepacket.

Fig. 7. Pseudo-codefor FPQ’s mainpacket handlingroutine.

rateis theratethatEquation1 predictswill causeeachof theN
TCPsto useawindow sizeof � qt ' P 
(	 N. P is aparametersetby
the network administratorto the productof the link bandwidth
andan estimateof the typical connection’s roundtrip time; its
valueis only importantwhentuninglow-loadsituations.

C. Achieving the Targets

If thenetwork consistedof a singlebottleneck,simplyapply-
ing the target lossratecalculatedin Figure5 shouldcausethe
actualqueuelengthto matchthetarget,qt. If therearemultiple
bottlenecks,andeachappliesthetargetlossrate,eachTCPwill
seea lossratehigherthanintended.Theresultwill bethateach
TCP’s window will betoo small,andtheTCPswill tendto fall
into timeout.

An FPQroutercandetectthis situation,sinceit will resultin
a queuelengthshorterthanthetarget. Thedegreeto which the
actualqueueis shorterthanthetargetwill reflectthenumberof
bottlenecks.To correctfor thiseffect,FPQdecreasesthediscard
rateit appliesin proportionto theratioof theactualqueuelength
to thetargetqueuelength.Figure6 showsthealgorithmfor this
adjustment.

Figure6 is therealreasonwhy FPQmustcountthenumberof
active connections.Without the count,FPQwould not be able
to calculatethe targetqueuelength(qt), andthuswould not be
ableto correctthediscardrateto reflectmultiple bottlenecks.

D. FPQ as a Whole

Figure7 showsFPQ’smainpacketprocessingroutine,which
mostlycallsthesubroutinesdefinedin theprevioussections.An
FPQ router runs one instanceof the algorithm for eachof its
outputlinks.

The overall effect of a network of FPQroutersshouldbe to
causeeachcompetingTCPto usea window of 6 packets. This
is theminimumwindow thatavoidsfrequenttimeouts;thusthe
networkwill exhibit theminimumqueuingdelayconsonantwith

B

Sender N

Sender 2

Sender 1

Receiver N

Receiver 2

Receiver 1

A

Fig. 8. Standardsimulationconfiguration. Eachof N TCP sendershas its
own hostandits own link to routerA. RouterA connectsto routerB over a
bottlenecklink.

Packet size 576bytes
Maximumwindow 64kilobytes
TCPtimer granularity 0.5seconds
TCPdelayed-ACK timer 0.2seconds
TCPversion Tahoe
A to B propagationdelay 45milliseconds
A to B bandwidth 1 megabit/second
Senderi to A prop.delay random,0 to 10ms
Senderi to A bandwidth 10 ./� 100 N � Mbits/sec
RED maxth 45packets
RED minth 5 packets
RED maxp 0.02
REDqueuelimit nohardlimit
Simulationlength 500seconds

Fig. 9. Summaryof simulationparameters.

goodTCPperformance.
FPQcontrolsTCPby varyingtheroundtrip time ratherthan

by varying the loss rate. In termsof Equation7, FPQholds l
constantandvariesR in proportionto thenumberof competing
connections.This causeseachTCP to sendat a rateinversely
proportionalto thenumberof connections,just asdesired.

V. EVALUATION

The main goal of FPQ is to improve the predictability and
fairnessof TCPtransferswithout increasingoverall delay. This
sectionusessimulationsto demonstratethatFPQachievesthese
goals.

Thesimulatednetwork topologylookslike Figure8. Thein-
tent of this configurationis to capturewhat happenson heav-
ily loadedlinks. For example,the link from A to B might be
the link from anInternetServiceProvider’s backboneto a cus-
tomer. Suchlinks usuallyrun slower thaneitherthe backbone
or thecustomer’s internalLAN, andthusactasbottlenecks.

ThesimulationsusetheNS 1.4 simulator[4]. Unlessother-
wisenoted,they usetheparametersgivenin Figure9.

Eachof theN sendersmakesrepeated10-packettransfers;af-
tereachtransfercompletes,thesenderre-initializesitsTCPstate
andstartsanothertransfer. Thesimulationsinvolveshorttrans-
fers for two reasons.First, theaverageInternetTCPtransferis
short[15]. Second,wecanevaluatethefairnessandpredictabil-
ity of network serviceby looking at the distribution of transfer
latencies.

The configuration against which FPQ is comparedis a
RED [10] router. The router’s maxth parameteris set to 45
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Fig. 10. Averagequeuelengthasa functionof thenumberof competingTCP
connections.
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Fig. 11. Averagedrop rate as a function of the numberof competingTCP
connections.

packets,which is two delay-bandwidthproducts. The router’s
maxp is set to 0.02. This RED configurationwill be referred
to as“Traditional” to emphasizethat it representstypical min-
imally buffered routers([6], [14], [13], [16]) rather than (for
example)RED with parameterstunedto uselarge numbersof
buffers. RED performancecanbe improved for any particular
situationby tuning its parameters,eithermanuallyor with au-
tomatic techniquessuchas ARED [11], SRED [12], or those
describedin this paper.

Figures10 and 11 show the averagequeuelength and dis-
cardrate,respectively, for the simulations.Eachshows results
for simulationswith a rangeof numbersof competingconnec-
tions.As expected,thetraditionalsimulationsexhibit increasing
lossratewith increasingload,but maintainshortqueuelengths.
FPQ, in contrast,lets the queuelength grow with increasing
load,but keepsthelossratelow. FPQqueuesfewerthan6 pack-
etsper connectionbecausethe transfersaretoo short to allow
largewindows.

The averageper-transferdelay producedby traditional and
FPQroutersarethesame,sinceaveragedelayis a functiononly
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Fig. 13. Ratioof 95thto 5th percentileof delayasa functionof thenumberof
competingTCPconnections.

of transfersize, numberof connections,and link bandwidth.
ThetraditionalandFPQroutersdiffer in theway they createthe
delay. Thetraditionalroutergeneratesdelayby forcingtimeouts
in responseto droppedpackets,whereasFPQgeneratesdelay
with queuingdelay.

Figure12 shows why it mattershow the delayis generated.
Thefigurecomparesthedistributionof transfertimesusingtra-
ditional andFPQrouters. 75 connectionssharethe 1-megabit
bottlenecklink, so the averagetime to transfer10 576-byte
packetsshouldbe 3.5 seconds.Both systemsresult in median
transfertimesof roughly 3.5 seconds.The traditional transfer
timesarequiteskewed: 40%of transferscompletein lessthan
half thefair time,and10%completein morethantwice thefair
time. With FPQ,however, almostall of the transfersseefair
delays.

Theunfairnesscausedby timeoutsgetsworseasthenumber
of connectionscompetingfor a bottleneckincreases,and thus
FPQ’s advantageincreasesaswell. Oneway to captureoverall
unfairnessis theratio of the95thto the5th percentileof delays
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encounteredby transfersin a particularsimulation. Figure13
plots this4 ratio asa function of the numberof competingcon-
nections.Theunfairnessratio increasesfor thetraditionalrouter
becauseonly afixednumberof connectionscanhavepacketsin
flight, andthe remaindermustwait in timeout. The ratio stays
nearonefor FPQbecausefew connectionstimeout.

To summarize,a traditional router experiencingheavy load
will imposea low queuingdelaybut ahigh lossrate.Thelosses
will force someunlucky transfersinto timeout, allowing the
lucky transfersto completequickly. In contrast,a busy FPQ
routerwill imposea highqueuingdelaybut a low lossrate.Ev-
ery transferseesthesamequeuingdelay, so thesystemis rela-
tively fair andpredictable.

VI . RELATED WORK

Theideathatwindow flow controlin generalhasscalinglim-
its becausethe window sizecannotfall below onepacket has
long beenknown [17]. Villamizar [14] suggeststhat this might
limit thenumberof TCPconnectionsaroutercouldsupport,and
that increasingroutermemoryor decreasingpacket sizecould
help. Eldridge[18] notesthatwindow flow controlcannotcon-
trol the sendratewell on very low-delaynetworks, andadvo-
catesuseof ratecontrol insteadof window control; no specific
mechanismis presented.TCPusesexponentiallybackedoff re-
transmittimeoutsasa form of ratecontrol whenwindow flow
controlfails;thesetimeoutshelppreventcongestioncollapsebut
aren’t fair.

Routerscould notify sendersof congestionexplicitly rather
thanby droppingpackets. Floyd [19] presentssimulationsof
a TCP andRED network usingexplicit congestionnotification
(ECN). Floyd observesthatECN reducestimeoutsfor interac-
tiveconnections,andthusprovideslower-delayservice.

Fenget al. [11] notethatECN worksbadlywith smallwin-
dows; a TCP with a window of 1 packet, for example,cannot
convenientlyslow down if it receivesan ECN. As a solution,
they implementEldridge’s rate-controlproposalto allow TCP
to sendlessthanonepacket per roundtrip time. Thecombina-
tion of rate-controlandECN increasesthenumberof TCPsthat
cancoexist with limited buffer space.Their rateincreasealgo-
rithm is multiplicative: every time it sendsapacket, it increases
therateby a fractionof itself. This increasepolicy turnsout to
have no bias towardsfairness[20], so that ratiosof sendrates
amongconnectionswill be stable. In contrast,TCP’s standard
window algorithmsusean additive increaseof onepacket per
roundtrip time,anddo tendtowardsfairness.

Whena RED router’squeueoverflows therouteris forcedto
dropall incomingpackets,andcannotdropa randomlychosen
subset.Equation6 shows that RED will persistentlyoverflow
if thereare too many active connections.Two RED variants,
ARED [11] andSRED[12], avoid overflows by effectively in-
creasingRED’s maxp parameterasthe numberof connections
grows. ARED andSREDchooseto keepthequeueshortandlet
the loss rate increasewith the numberof connections.FPQ’s
goal, in contrast,is to provide scalablebuffering without in-

creasingthelossrate.
Nagle [21] proposesthat routersmaintaina separatequeue

for eachconnection,with round-robinschedulingamongthe
queues. The optimum senderbehavior with this kind of fair
queuingis to buffer just onepacket in the router. If sendersin
factbufferedjust onepacket, routerscouldbebuilt with unlim-
ited buffer memory, but would only useit in proportionto the
numberof activeconnections.TCPsendersdonothavethisop-
timal behavior, andper-connectionqueuesareexpensive; FPQ
achievesmuchof thescalingbenefitof Nagle’s per-connection
queuingusing inexpensive FIFO queuing, though FPQ only
makessensefor TCPtraffic.

In an effort to achieve the benefitsof Nagle’s fair queuing
without theoverheadof maintainingper-connectionqueues,Lin
andMorris [22] proposea fair droppingstrategy calledFRED.
FREDstorespacketsin a singleFIFO, but forbidsany connec-
tion from queuingmorethana handfulof packets.This bounds
theunfairnessallowed,andrequiresonly per-connectioncount-
ing, not queuing.FRED shouldscalewell with the numberof
connectionsbecauseit allows a router to be built with a large
packet memory, but only to usethat memoryin proportionto
the currentnumberof connections.However, FRED requires
TCPto adoptmoreaggressive lossrecovery algorithms[23] in
orderto avoid timeouts.FPQavoids this tradeoff andalsouses
lessper-connectionstatethanFRED.

VI I . CONCLUSIONS

Thepacketlossesimposedby IP networkscancauselongand
erraticrecoverydelays,sincesendersoftenuseconservativeloss
detectionandretransmissionmechanisms.This paperproposes
a modelto explain andpredictlossratesfor TCPtraffic. Based
on thatmodel,thepaperdescribesa routerbuffering algorithm
thatcontrolsheavy TCPloadswithout imposinghigh lossrates.

The lossesthata TCPsenderexperiencesdo not, in general,
reflectthatsender’ssendrateor choiceof window size.Instead,
the loss rateproducedby a bottleneckrouter reflectsthe rela-
tionshipbetweenthetotal loadontherouterandthebottleneck’s
capacity. Thispaperquantifiesthatrelationshipby definingload
astotal numberof competingsendersandcapacityasthenum-
berof packetsthatsenderscanstorein thenetwork.

If capacityis fixed, load and loss rate have a relationship
somewherebetweenlinearandquadratic.Most existing routers
operatein thismode.As aresultthey controlheavy loadsby im-
posinghigh lossrates,long timeoutdelays,anderraticservice.

This paperdemonstratesa better approachto coping with
load, called Flow-ProportionalQueuing(FPQ). FPQ variesa
bottleneck’scapacityin responseto theloadin awaythatcauses
thelossrateto remainconstant.Thatis, FPQmonitorsthenum-
berof activesenders,andarrangesthattheaveragebuffer space
usedin therouterbeproportionalto thatnumber. In effectFPQ
controlsTCPsendersby varyingqueuingdelay, ratherthanby
varyingthelossrate.FPQimposeslow queuingdelayunderlow
load.Underheavy loadFPQimposesthesameaveragetransfer
time asloss-basedcontrol,but producesa fairerdistribution of
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transfertimes.ThusFPQshouldimprovethepredictabilityand
fairnessof heavily loadedTCPnetworks.
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